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Vision research has traditionally been studied in stationary

subjects observing stimuli, and rarely during navigation. Recent

research using virtual reality environments for mice has

revealed that responses even in the primary visual cortex are

modulated by spatial context — identical scenes presented in

different positions of a room can elicit different responses.

Here, we review these results and discuss how information

from visual areas can reach navigational areas of the brain.

Based on the observation that mouse higher visual areas cover

different parts of the visual field, we propose that spatial signals

are processed along two-streams based on visual field

coverage. Specifically, this hypothesis suggests that landmark

related signals are processed by areas biased to the central

field, and self-motion related signals are processed by areas

biased to the peripheral field.
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Introduction
Navigation is one of the fundamental requirements for

survival as it is needed to find food, approach potential

mates, or reach safety when there is a threat. To navi-

gate, one needs to observe and interpret the surrounding

environment, for which vision is key in most mammals,

from humans to rodents. As humans, we use visual

information to understand our surroundings, remember

them, and direct our future movements. Similarly,

rodents commonly use vision for navigation, which is

demonstrated by classic tests of spatial memory. For

example, in the Morris water maze task – one of the

most popular tests of spatial memory in rodents – ani-

mals use distal visual cues to navigate their environment

[1]. Consistent with this, vision is known to strongly
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influence neural representations of space: for instance,

place cells (in hippocampus) and head direction cells (in

various brain regions) rotate their representation of space

when visual features in the environment are rotated [2–

7]. Yet, how visual information reaches the navigational

system remains unknown as few studies have measured

activity in the visual system during navigation [8,9]. This

has mainly been due to the difficulty of controlling visual

stimulation in freely moving animals. Fortunately, the

recent development of the rodent virtual reality systems

[10,11] has removed this constraint, and expanded the

possibilities for studying vision during navigation

[12,13]. In these systems, a head-fixed animal can

explore a virtual environment by running on a wheel

or ball. Using such rodent virtual reality in combination

with high-resolution imaging or multi-electrode array

recordings, there have been an increasing number of

studies investigating the mouse visual system during

navigation [14��,15�,16�,17�,18,19��,20]. In this article,

we will review recent findings regarding how navigation

alters responses in visual areas. This new data provides

new challenges to existing theories of visual processing

and an opportunity to revisit them from a fresh perspec-

tive of navigation. We propose a new two-stream hypoth-

esis — that visual information for navigation is processed

along two streams that are based on visual field coverage.

Overview of mouse visual cortex
We first provide a very brief overview of the mouse

visual system (see Glickfeld and Olsen [21��] for a

detailed review). Mice have a large field of view,

covering a range of over 270� along the horizontal axis

and over 120� along the vertical axis [22,23]. Similar to

other mammalian visual systems, retinal cells of mouse

project to two brain regions, the superior colliculus in

the mid-brain and the dorsal lateral geniculate nucleus

(LGN) in the thalamus, and LGN neurons in turn

projects mainly to the primary visual cortex (V1)

(Figure 1a). Inputs into V1 are retinotopically organised,

that is there is a topographic progression of the part of

the visual field that elicits a response in the region.

Using the presence of retinotopic maps, and anatomical

connectivity with V1, 11 distinct higher visual areas

have been identified in mouse [24,25,26��]. These areas

surround V1 and are named based on their topographic

position relative to V1, and include (clockwise from

left): lateromedial (LM), laterointermediate (Li), ante-

rolateral (AL), rostrolateral (RL), anterior (A), antero-

medial (AM), posteromedial (PM), posterior (P) and

postrhinal (POR) [25,26��,27] (Figure 1b).
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Visual areas in the mouse brain and spatial modulation in the primary visual cortex.

(a) Early visual areas in mouse brain (LGN: lateral geniculate nucleus; SC: Superior Colliculus; V1: Primary visual cortex). (b) Higher visual areas in

mouse cortex (P: posterior; POR: postrhinal cortex; LM: lateromedial area; Li: lateral area; AL: anterolateral; RL: rostrolateral; A: anterior; AM:

anteriomedial; PM: posteromedial areas). (c) The virtual reality environment where the mouse can navigate the virtual environment by running on a

styrofoam wheel. (d) Design of the virtual environment with two identical segments. Images from half the display are shown from four positions,

which include two images from the first segment (at 18 cm and 34 cm) and two from the visually matching positions in the second segment (at 58

cm and 74 cm). (e) Response as a function of position of six example neurons recorded from the primary visual cortex. (a),(b) are drawn in Ref. [

73], based on the Allen common coordinate framework (c)–(e). Adapted from Ref. [14��].
Subsequent to the identification of 11 distinct visual areas

in mouse cortex, there has been considerable interest in

understanding their functional organisation. In primates,

visual areas are classically split into two streams of pro-

cessing, the dorsal (where) stream for movement infor-

mation and the ventral (what) stream for object identifi-

cation [28,29]. Similar attempts have been made in

mouse, the most influential of which is from the Burkhal-

ter group that is based on anatomical connectivity [24,30].

They place areas LM, Li, P and POR along a ventral

stream, based on their connectivity to entorhinal cortex

and temporal association areas. The dorsal stream

includes AL, RL, PM, AM and A, and is based on

connectivity with the retrosplenial, anterior cingulate

and motor cortices [30]. The functional specialization

of mouse higher visual areas have been investigated based

on preferences for specific spatial and temporal frequen-

cies, or selectivity to global motion [31–37,38��]. To date,

however, there has been limited success in understanding

how functional specialisation of different mouse visual
www.sciencedirect.com 
areas supports behaviour. Indeed, an exhaustive survey of

responses of visual cortical neurons to various visual

stimuli found that a large fraction of neurons do not even

respond to classical visual stimuli such as drifting gratings

[38��]. We propose that functional specialisation might be

better understood using a framework based on naviga-

tional requirements.

Evidence of spatial signals in mouse visual
cortex
One of the first studies to measure visual cortical

activity in animals navigating a spatial environment

was by Ji and Wilson [39]. They found neurons that

exhibited localised firing fields, resembling place fields,

in rats running through a figure-of-eight maze. How-

ever, as these observations (and similar studies [40�])
were from animals exploring real environments with

limited control of visual scenes, the location specificity

may be due to differences in the retinal image experi-

enced by the animals.
Current Opinion in Neurobiology 2020, 64:70–78
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In order to test if activity in visual cortex is indeed modu-

lated by spatial information, we need to create an environ-

ment in which we have precise control over the retinal

images experienced by an animal. Saleem et al. [14��], took

advantage of a virtual reality setup for rodents [10,11,41] to

create such an environment — a linear corridor with two

visually matching segments (Figure 1c,d). Visually match-

ing segments have a simple prediction: if responses are

driven purely by visual scenes, responses should be identi-

cal in the two matching segments of the environment.

Surprisingly, many neurons in V1 did not show such

identical responses, thus suggesting responses were mod-

ulated by non-visual signals (Figure 1e). The modulation

was so strong that some neurons had just a single peak in

the environment (Figure 1e). This spatial modulation was

much higher than what was expected by chance in visual

neurons, and could not be explained by any other non-

visual signals, including running speed, reward, eye

movements and pupil size [14��]. Similar spatial modula-

tion of visual response has also been shown to persist even

in the absence of visual cues, at least when related to

reward position [19��,20]. Thus, neurons in V1 show a

strong modulation of responses by spatial context.

Is the spatial context causing this modulation of visual

signals related to the signals encoded in navigational areas

of the brain, that is, the spatial signals? Saleem et al.
recorded simultaneously from V1 and the CA1 region of

the hippocampus using multi-electrode arrays (Figure 2a)

[14��]. Neural populations in both areas represented the

environment, and using a Bayesian decoder, they could

effectively decode position of the animal based on popu-

lation activity (Figure 2b). More importantly, the position

decoded from both these areas was highly correlated,

including common errors, suggesting that V1 and CA1

were indeed representing the same spatial information

[14��,15�,40�].
Figure 2
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We have so far discussed how spatial signals influence

responses in V1, but how do these signals influence

responses across the hierarchy of mouse visual areas?

For example, does the spatial modulation of visual

responses begin in cortex or are they inherited from

LGN thalamic inputs? Recordings in freely moving ani-

mals suggest that spatial signals might also be present in

the LGN [42]. However, LGN afferents in V1, recorded

by expressing a calcium indicator in LGN neurons and

imaging boutons in V1, show negligible spatial modula-

tion of responses in a virtual reality environment [16�].
Recordings from six different higher visual areas, LM,

AL, RL, A, AM and PM, revealed that spatial modulation

is ubiquitous among the observed cortical visual areas

[16�]. Therefore, this suggests the modulation of visual

responses by spatial signals starts from V1 and persist

across higher visual areas.

As described above, there is growing evidence of spatial

signals in visual areas of the brain. In parallel, there is also

a better understanding of the integration of visual signals

with idiothetic signals (signals that relate to physical

distance travelled) across a range of navigational brain

regions: retrosplenial cortex (RSC) [18,43], medial

enthorhinal cortex (MEC) [44–47] and CA1 [45,48–51].

Given the increased understanding of how individual

areas function during navigation (especially in virtual

environments), we can now consider how information

flows between the visual and navigational regions of

the brain.

Two-streams of processing for navigation
While we have discussed how navigation alters activity in

visual areas, how do navigational regions of the brain build a

representation of the environment — like the cognitive

map in the hippocampus [52]? To create a cognitive map,

the hippocampus needs to use available sensory informa-

tion. This sensory information includes visual information,
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nd hippocampus.

d CA1 region of the hippocampus using multi-electrode arrays. (b)

nimal in VR in V1 (left) and CA1 (right). (Adapted from Ref. [14��]).
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especially in virtual environments where spatial position is

defined based on visual cues. So, how does information

about visual cues flow from visual areas to the

hippocampus?

The primary routes through which the hippocampus

receives cortical inputs are the entorhinal cortices: the

medial entorhinal cortex (MEC) and the lateral entorhi-

nal cortex (LEC). The MEC contains cells that encode

features related to self-motion, including grid cells

[53,54], speed cells [55], and head-direction cells

[54,56]. The LEC instead has neurons that encode object

related information, including object vector cells (cells

that are active when the animal is at a certain distance and

direction from an object) [57], or trace cells (cells that fire

in locations where an object was previously present) [58].

Based on the specialisation in MEC and LEC, it has been

suggested [59] that these areas, which receive multimodal

inputs from various sensory and motor regions, represent

the end-points of the what and where streams of visual

processing, which are then integrated at the hippocampus

(Figure 3). Functionally, self-motion related information

would benefit from optic flow related signals. One the

other hand, the representation of landmarks and objects

would need information related to visual recognition such

as fine features. Therefore, visual information relevant for

navigation can be broadly segregated into one stream for

object and landmark features, and a second stream for
Figure 3
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optic flow signals (Figure 3). This segregation of infor-

mation is potentially useful also for non-navigational

functions. For instance, information about self-motion

can be used for motor control, while information regard-

ing objects and landmarks can be used for visual

recognition.

Two-streams based on visual field coverage –
central and peripheral visual streams
Here, we suggest a variation of the two-stream hypothesis

based on visual field coverage: one stream includes areas

processing information related to objects and landmarks

within the central visual field, while the second stream is

biased to process movement related information from the

peripheral visual field. This hypothesis is inspired by two

key observations: the distribution of navigationally rele-

vant information across the visual scene, and biases of

visual field coverage in higher visual areas (Figure 4).

The first observation is a bias in visual information across

the visual field during navigation. Most large movements

while navigating tend to be forward translations (moving

straight ahead), interspersed with head and body rotations

to orient oneself towards a target. The rotations are likely

controlled by superior collicular circuits [60]. Forward

translations generate an expanding optic flow pattern

going outward from the target landmark. This would

result in motion vectors whose amplitude increases as
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(a)

(c)

(e)

(b)

(d)

(f)

E
le

va
tio

n

E
le

va
tio

n

Azimuth

Azimuth

Current Opinion in Neurobiology

Hypothesized central and peripheral visual streams for navigation.

(a) Example natural scene [74] The red arrow points to a potential target/landmark location (b) Schematic of the optic flow pattern expected for

forward translation towards a central target/landmark (based on Ref. [75]) (c) The overlay of the optic flow vectors on the sample natural image.

(d) Hypothesized distribution of the visual information at different positions in the visual field (while the chosen natural scene in (a),(c) has no

features in the region highlighted ‘Distal Landmarks’, one can expect distant features in landscapes, such as hills, in this region) (e),(f). Visual field

representation across higher visual areas. Modified from Ref. [26��]. Areas hypothesised to be on a central pathway are circled, while those on the

peripheral pathway are in a rectangular box.
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we move further away from the target, are maximal on the

side and then reduce again towards a point behind the

animal [61�]. Therefore, the motion vectors are small in

the central part of the visual field and larger in most of the

periphery visual field for forward translation (Figure 4a,b).

In conjunction, natural scenes tend to have more features

near the horizon and in the lower part of the visual field.

The lower field also has features that are closer to the

observer, and as we go skywards into the upper visual

field, features represent aspects that are more distant and

sparser (Figure 4c). This suggests that the most informa-

tion regarding movement or speed is present in the lower

periphery, while the central visual field is likely to have

the landmarks that the subject is interested in and head-

ing towards (Figure 4d). Incidentally, as the binocular

region of mouse vision is within it, the central field is also

useful in estimating distance to a landmark or object.

The second observation is that individual higher visual

areas have biases with regards to the coverage of the visual

field [25,26��,27]. Visual areas medial to V1 predomi-

nantly process information in the far peripheral visual

field, while areas lateral to V1 are biased towards the

central visual field (Figure 4e,f) [26��]. This incomplete

representation could be considered a limitation of the

rodent visual system. Alternatively, it could also be a

feature, where areas specialized for certain visual features

are biased to view the part of the visual field with the most

relevant information. For example, optic flow might be

best processed in the periphery part of the visual field.

Thus, the limited visual-field representation of higher

visual areas can potentially benefit their corresponding

functional specialisation.

The two observations above suggest that areas specialised

to observe the lower periphery are better suited to access

visual information related to the speed of the animal.

Conversely, areas observing the central visual field are

better suited to recognising landmarks and obstacles.

Therefore, we hypothesize that navigational information

is processed along these central and peripheral streams,

where the ‘central’ stream processes landmark and object

information, while the ‘peripheral’ stream processes self-

motion signals. This would place areas LM, Li, AL and

RL along the central streams, and areas PM, P, AM and A

along the peripheral streams. Based on function and the

identified areas the central stream is analogous to the

ventral stream and the peripheral stream to the dorsal

stream.

On the basis of the hypothesis of two-streams of visual

processing for navigation, we can make a couple of pre-

dictions on their function. The first prediction is based on

the fact that spatial representations in the place cells and

head-direction cells are known to be strongly controlled

by visual cues (or landmarks) [2–6]. As the hypothesis

suggests landmarks and objects are processed by the
www.sciencedirect.com 
central stream, we predict cue-locking is controlled by

the central visual stream.

Recordings of place cells and grid cells in virtual envir-

onments show that virtual expansion or contraction of

the environment, causes similar effects in the represen-

tation of distance travelled in the environment

[44,45,50]. Such effects are likely controlled by self-

motion signals including optic flow, which the hypoth-

esis attributes to the peripheral stream. Therefore, we

predict that areas along the peripheral stream control

the contraction and expansion of representations

observed in navigational areas.

While we have discussed the two-stream hypothesis with

regards to how visual information reaches hippocampal

structures, information flow is likely to be bidirectional,

especially given the presence of spatial signals in visual

areas [14��,15�,16�,42]. While the main output regions

from the hippocampal circuits to the cortex are the sub-

iculum and entorhinal cortices — which of them are

specifically involved in routing spatial signals to visual

areas remains an open question.

Conclusions
In this article, we reviewed how visual responses are

modulated by spatial signals in the primary visual cortex

[14��,15�,19��] and across mouse visual areas [16�].
These findings show how visual processing can be

different during navigation, and highlight the impor-

tance of studying visual coding during navigation. In

parallel, virtual reality has also been used to understand

how spatial signals are processed across a range of brain

areas, including RSC [18,43], MEC [44–47] and CA1

[7,45,48–51]. With this improved expertise, we can now

take advantage of virtual reality systems to systemati-

cally test various aspects of navigational processing with

virtual or neural manipulations, looking at layer based

[62], local circuits, or projection specific populations

[63–66] to investigate mouse visual processing during

navigation.

While the focus of this article has been on the mouse

visual system, some of the observations can also relate to

other species. For instance, the distribution of visual

information across the visual field during navigation

would be similar across species (Figure 4a–d). In addition,

recent primate studies found a bias in visual field cover-

age in some higher visual areas: they find specific brain

regions that process the far periphery (>50�) based on

both electrophysiology in primates [67–69] and fMRI in

human subjects [70,71]. Using new display technologies

that cover the far periphery, perhaps future research may

yet discover more about visual processing in the far

periphery [67], including perceptual differences like

those observed between the central and peripheral visual

fields in human subjects [72].
Current Opinion in Neurobiology 2020, 64:70–78
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Here, we proposed a two-stream hypothesis for proces-

sing navigational information that is based on visual field

coverage. While this hypothesis predicts certain speciali-

sation of higher visual areas, the distribution of functional

properties might not be fully distinct, and there might be

overlap between the streams. For example, MEC, which

is considered to have neurons that represent self-motion

related signals, also has a representation of landmarks

[46,47]. This could either be from receiving inputs from

both visual streams, or the presence of mixed representa-

tions within the peripheral stream. Regardless of the

precise anatomical separation into two-streams, the func-

tional segmentation of navigationally relevant visual

information, into landmark and self-motion related sig-

nals, can provide an accessible framework to design future

experiments.
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